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The axial penetration of an azimuthal magnetic field into a short-duration hollow cylindrical
plasma is studied. When the process is so fast that the ion motion is small and the plasma
dissipative resistivity, electron inertia, and pressure are small, the evolution of the magnetic
field is governed by the Hall field. When the radial current flows inward, the magnetic field
penetrates in the form of a Hall-induced shock wave with a narrow current channel. When
outward, the magnetic field does not penetrate the plasma. Moreover, in the laiter case the
magnetic field is expelled from an initially magnetized plasma. The increase and decrease of
the magnetic field intensity in the cylindrical plasma are shown to result naturally from the

frozen-in law.

. INTRODUCTION

The effect of the dissipationless Hall field on the behav-
ior of plasmas is often considered (see, for example, Refs. 1-
9). We focus on the role of the Hall field in magnetic field
penetration into short-duration plasmas. When a process is
so fast that the ion motion is small and the plasma dissipative
resistivity, electron inertia, and pressure are small, the evolu-
tion of the magnetic field is in fact governed by the Hall field.
In a parallel paper'® we examine the magnetic field penetra-
tion into an already magnetized short-duration plasma. In
Ref.10 the Hall electric fieid enables the magnetic field to
penetrate as a whistler wave along a background magnetic
field. In the present paper we study the axial penetration of
an azimuthal magnetic field into an initially unmagnetized
short-duration hollow cylindrical plasma. Contrary to the
mechanism of penetration described in Ref, 10, the mecha-
nism described here does not rely upon the presence of a
magnetic field component in the direction of penetration.
We show that for an inward radial current the Hall field
significantly enhances the magnetic field penetration. The
magnetic field then penetrates in the form of a Hall-induced
shock wave. However, in the case of an outward radial cur-
rent, the magnetic field does not penetrate the plasma. More-
over, if in this case the plasma is initially magnetized, the
magnetic field decreases the volume it occupies and is ex-
pelled from the plasma.

In Sec. IT we explain the physical origin of the mecha-
nism of magnetic field evolution and show that this evolu-
tion results naturally from the frozen-in law. We then derive
the governing equation. In Sec. III we describe the magnetic
field penetration in the form of a Hall-induced shock wave.
The expulsion of the magnetic field from an initially magne-
tized plasma is described in Sec. IV. We conclude in Sec. V
with a discussion of the limitations of our model.

Il. THE MODEL

We consider plasmas of relatively low pressure and un-
der strong magnetic fields for time scales longer than the
eleciron cycloiron period. Ohm’s law, which results from
the electron momentum equation, becomes
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E=7i— (v.XB)/c. (1)

Here E and B are the electric and magnetic fields, j is the
current, v, is the electron flow velocity, ¢ is the velocity of
light in vacuum, and % is the collisional resistivity. In the
limit of zero resistivity, the electrons move with their EXB
velocity only. If we combine Ohm’s law in this limit with
Faraday’s law we obtain

9B _ vx(v.xB). 2)
ot

Equation (2) expresses the familiar frozen-in law; the mag-
netic field is frozen into the electron fluid.

We first discuss the mechanism that governs the evolu-
tion of a magnetic field which satisfies the frozen-in law.
Such an evolution was recently addressed by Kulsrud et
al.,'' who analyze an axially symmetric electron flow in cy-
lindrical geometry, where the magnetic field has an azi-
muthal component only. Kulsrud ez al. show that in such a
flow nr/B is constant along an electron trajectory (» is the
electron density); they then make the assumption [assump-
tion (4) in Ref. 11] that the plasma is in a quasisteady state,
so that the electron current lines are coincident with the
electron trajectories. From this assumption follows the con-
clusion that along the electron current lines nr/B should be
constant. Since this is usually not so, Kulsrud ez al. conclude
that a pure E X B motion of the electrons is not possible. This
conclusion is in fact correct only with regard to steady-state
current distributions. Pure E X B motion is possible and re-
sults in time-dependent current distribution where the cur-
rent lines are not coincident with the electron trajectories.
When nr/B is not constant along the current lines, the mag-
netic field and current lines evolve in time, so that nr/B re-
mains constant along the electron trajectories. If the density
is uniform and the electrons move radially from a small radi-
us to a large radius the magnetic field grows in time, so that
nr/Bis constant along the electron trajectories. The magnet-
ic field then penetrates into the plasma. If, however, the elec-
trons move radially from a large radius to a small radius the
magnetic field does not grow, but rather decreases in time.
Thus the nonuniformity of nr/Bis the source of the magnetic
field evolution and results in either an increase or decrease of
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the magnetic field intensity in the cylindrical plasma. We
emphasize that the magnetic field intensity may increase
from a nonzero value to a larger value while satisfying the
frozen-in law. However, in order for the magnetic field in-
tensity to increase from a value of zero there must be some
resistivity.

In rectangular geometry n/B has to be constant along
electron trajectories. By an argument similar to that above, if
electrons move from a low density region to a high density
region, the magnetic field in the plasma grows in time, while
if the electron motion is reversed, the magnetic field reduces
in time.

We assumed above that the time scale is longer than the
electron cyclotron period and therefore neglected the elec-
tron inertia. We now restrict ourselves to magnetic field evo-
lution in short-duration plasmas, where the characteristic
time is smaller than the ion cyclotron period and we assume,
therefore, that the ions are immobile. These two assump-
tions correspond to the assumption that the ion mass is infi-
nite, while the electron mass is zero. Equation (1) is then
approximated as

E = 7j + (jXB)/enc. (3)

Here j is the current and e is the electron charge. At the limit
of immobile ions the Hall field, which is the second term on
the right-hand side of Eq. (3), results from the electron mo-
tion only. As often done for plasmas of high enough density,
we neglect the displacement current in Ampeére’s law:

VX B = (47/c)j. (4)

Since the current is divergence-free the charge density is con-
stant in time and since the ions are immobile the electron
density is constant in time. Equations (3) and (4), com-
bined with Faraday’s law, become

dB 'y [(1 ) ]
—————VB——-—V — VxXB|xB]|. 5
ot 47 4ar X nec XBJX )

Equation (4) governs the evolution of the magnetic field in
short-duration plasmas in the presence of electron motion
only. The first term on the right-hand side of Eq. (4) is the
source of collisional diffusion; the second term results from
the Hall field. In the present paper we examine the effect of
the Hall field in cylindrical geometry. The case in which the
Hall field enables the magnetic field to penetrate as a whis-~
tler wave is studied in Ref. 10. The magnetic field evolution,
when governed by the electron dynamics, has been studied
extensively in the Soviet literature.’

Assume a hollow cylindrical plasma that fills the gap
between two concentric cylindrical conductors and closes
the circuit for a current which flows in one conductor and
returns in the other conductor. The system has cylindrical
symmetry (d /96 = 0) and the magnetic field has only a 8
component. The governing equation (5) becomes

9B, cn[azBe _a_(_1_ a(rB,,))]
ot oz or ar

¢ Bos 9By

2mne r dz

For simplicity the constant-in-time density is assumed uni-
form in space. Equation (6) is now written as

(6)
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, b= —1rB,. 7N

ot  2mner dz Am

(041 4

. s o o
db . _cb b cn%ﬁ

Since we are interested in the case in which the collisionality
is small, we have neglected the collisional terms in the radial
direction. We have retained only the coilisional term in the
axial direction, which is the term that smooths the singular-
ity at the possible shock front. The collisional terms that
include radial derivatives are important near the radial
boundaries. In a future analysis we will present a full 2-D
solution of Eq. (6).

Assume now that a finite hollow cylindrical plasma is
located at — a<z<0and r,<r<r,. At £>0 a constant-in-time
current flows in the conductors and generatesatz= —aa
constant-in-time magnetic field b = r,B,, while at z = 0 the
magnetic field is b = 0. Equation (7) becomes

ﬁb_ 8b 8 b

ar + 8§ 85 2
where 7=t /7,,é=z/a,and b=b /(r,|By|). The transit time
7, and the normalized resistivity v are

(8)

7, =2mner’a/c|By|r,, v=ncner’/2|B\ar,. 9

Note that since in Eq.(8) there is no derivative with respect
to r, we treat r as a parameter. The normalized resistivity v
measures the ratio of the collisional resistivity 7 to the effec-
tive Hall “resistivity” (2|By|ar,)/(cner®). The characteris-
tic velocity of penetration is ¢|By|r,/(4mner®). As long as
this velocity is large compared to the Alfvén velocity
| Bylri/(4mMn)'/*r (M is the ion mass), there is not much
plasma pushing and the magnetic field penetration is the
dominant process. In this case the plasma density remains
constant. The criterion for the validity of our model is, there-
fore, c/w,, >r (w,, is the jon plasma frequency).

Equation (8) is the Burgers equation.'? In a similar
analysis of magnetic field penetration into plasmas’ the
Burgers equation is derived in relation to penetration per-
pendicular to a density gradient in a nonuniform plasma; the
analogous penetration in cylindrical geometry is mentioned
as well. Here we will explicitly solve the initial-value prob-
lem in finite hollow cylindrical plasma and discuss the ex-
pansion wave that describes magnetic field expulsion from
the plasma.

lIl. FAST MAGNETIC FIELD PENETRATION

We solve Eq. (8) with the initial magnetic field
b(r,7=0) = by(r,&) and the boundary conditions
b(r, - 1,7) = + 1, b(r,0,7) = 0. The first set of conditions
(the plus sign) corresponds to the case in which the cathode
is in the inner conductor, while the second set (the minus
sign) corresponds to the cathode in the outer conductor. We
show that these two cases exhibit completely different beha-
viors of the magnetic field.

We solve Eq. (8) by transforming it into the linear heat
equation Jy/dr = v(3*Y/3E?) for Y(&,7) through'?

b= _Zv_a_t/l/gé

(10)
The corresponding boundary conditions are
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%o =0

1
T (1, ), 2
Fo VD=2 ™ 5

(11)
and the initial condition is

¢ )
w50 =exp( — [ dgr D). (12)
o 2v
The magnetic field is therefore
7 ek, sin(k,E)exp( — vk2r)
(&) = 2v—— , (13)
3= .a, cos(k,,g)exp( — ka,f)
where k,, are the roots of the dispersion relation
+ 1/2v=k, tank,. (14)

Let us first examine the case in which the cathode is in
the inner conductor [the sign in Eq. (14) is minus]. The
dispersion relation has an infinite number of real eigenvalues
k,,one in each interval [#(n — 1),mn]. There is also a pair
of complex conjugate purely imaginar§ eigenvalues. The so-
Iution of the heat equation is therefore unbounded, but the
corresponding solution of the Burgers equation is perfectly
physical. We assume that the plasma is initially unmagne-
tized bo(rég) =0, ¥(£,0) =1 for — 1<£<0. The coeffi-
cients then are ¢, = 4 sin k,,/(2k, + sin 2k, ). The asymp-
totic solution of the Burgers equation is determined by the
growing mode of the heat equation and has the form of a
steady shock

b(rg,r= ) = — 2vjko|tanh(]kol&). (15)

At the limit of low collisionality (v < 1) the magnetic field
almost fills the plasma except for a narrow layer of a thick-
ness proportional to the resistivity. The current is concen-
trated in this layer and the magnetic field drops to zero
across it.

The real eigenvalues &, (n = 1,2,...) are located in the
intervals [(n— Pmnm]. The smaller k,’s, for which
2vk, €1, are located near (n — 1)7 and are approximately
k,=(n—{)7(1+42v). The larger k,’s, for which
2vk,> 1, are located near nw and are approximately
k, =nmw(1 — 1/2vn*n?). The imaginary eigenvalues are
ko= =+ (i/2v)(1 +2e~'*). The asymptotic solution
becomes

blEr=00)= —(1+2e=")
X{[1 —exp(&/v)1/[1 +exp(&/v) ]}

+61[(e~""’]. (16)

The magnetic field deviates from — 1 only in the narrow
boundary layer, where |£| = 8(v).

In the second case the cathode is in the outer conductor
and b(r, — 1,7) = — 1. The dispersion relation [Eq. (11)
with the plus sign] has real eigenvalues only. In each interval
[(n — D (n — 5)17'] there is one eigenvalue
k,(n=1.2,..). The asymptotic solution is determined by
the slowest decaying mode of the heat equation

b(é7= ) = 2vk, tan k£, (17)

When the collisionality is low the magnetic field does not
penetrate the plasma except for a narrow boundary layer.
The smaller k,’s, for which 2vk, €1, are approximately
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k,=(n—37(1 —2v). The larger k,’s, for which
vk, > 1, are approximately k,=(n—Dr[l
+ 1/2v(n — 1)*7?]. The asymptotic solution is therefore

(&7 = oo} = v tan [(#/2) (1 — 2v)€ ]| + B(V2).

(18)

Thus the magnetic field is small except when & + 1 = 6(v).
Figure 1 shows the penetration of the magnetic field into

the plasma as a function of time for both cases. When the
inner conductor is the cathode the magnetic field penetrates
the plasma in the form of a shock. The characteristic pene-
tration time is the transit time 7,. The geometry considered
here is similar to that of the plasma opening switch
(POS)."*!* The rate of penetration of the magnetic field into
the plasma in the POS is a central issue.>®!>-!® For the typi-
cal parameters of a POS (n = 10" cm ~3, |B,| = 10 kG,
7y = S5Scm, r, = 8cm, @ = 10cm), the transit time is 30 nsec,
which is much shorter than the resistive diffusion time. The
mechanism described here could possibly be considered in
conjunction with the fast magnetic field penetration mea-
sured in the POS.'> However, further experimental and
theoretical studies are necessary before any such relation
between the mechanism described here and the POS is sug-
gested. Measurements of the spatial distribution of the mag-
netic field in the plasma of the POS and the dependence of
this distribution on the switch polarity are necessary. Pre-
vious measurements employing current loops'® have been
made only for the case in which the cathode is in the inner
conductor and for this case seem to confirm the prediction of
this model for fast penetration. However, we are not aware of
any measurements that could support the prediction of
strong dependence of the field penetration on the switch po-
larity. A theoretical study should include the physics of the
sheaths near the electrodes'® and in particular, the ion push-
ing from the sheaths by the magnetic pressure.?® These
sheaths are believed to play a dominant role in POS perfor-
mance. We also note that there is no evidence of the effect
described here in simulations of the POS.'® The Soviet re-
searchers® also suggested and discussed in detail the possibil-
ity that this shock wave, which they relate mainly to density
nonuniformity, is associated with magnetic-field penetration

Penetration of the Magnetic Field

FIG. 1. Penetration of the magnetic field b into an initially unmagnetized
plasma for 2 negative polarity (positive values) and for a positive polarity
(negative values) for various times 7. Here v = 0,05.
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in the POS. However, because of the simplicity of our model
and the large number of assumptions involved, our purpose
is not to describe or model any particular device, but
rather to describe a basic physical effect in an idealized
configuration.

IV. EXPULSION OF THE MAGNETIC FIELD

A somewhat unusual case arises when the plasma is ini-
tially magnetized when the outer conductor is the cathode.
The initial condition is bo(r,g) =
#{£,0) = exp(& /2v). The magnetic field behaves as an ex-
pansion wave and is expelled from the plasma on the transit-
time time scale. The detailed forms of the boundary layer
[Eq. (15)] and surface current are established on the slower
resistive time scale. The coefficients are
a, =8v/[1+ (2vk,)?](2 + sin 2k,,). Figure 2 shows the
expulsion of the magnetic field from the plasma. An initially
magnetized plasma expels the magnetic field. Although of a
completely different nature, the effect of the magnetic field
relaxing to a steady state in which it is expelled from a large
volume of the plasma without a change in the boundary con-
ditions is somewhat reminiscent of the Meissner effect in
superconductors.

Let us describe a scenario in which the magnetic field
decreases the volume it occupies in the plasma and is even
expelled from the plasma without a change in the magnetic
field at the plasma axial boundaries. The nature of the expul-
sion of the magnetic field we will now describe is different
from that of the expulsion shown in Fig. 2. The plasma resis-
tivity will change and as a result the steady-state distribution
of the magnetic field will be changed. We are not sure
whether this scenario could be realized in practice. How-
ever, it exhibits how in principle the expulsion of the magnet-
ic field could occur.

We assume a plasma in which the collisional resistivity
is initially larger than the Hall resistivity. The magnetic field
diffuses into the plasma and the current fills the plasma uni-
formly on the resistive time scale. As the plasma is heated by
the currents, its collisional resistivity (if it is classical) de-
creases and the Hall resistivity becomes dominant. If the

Expulsion of the Magnetic Field
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FIG. 2. Expulsion of a magnetic field from an initially magnetized plasma.
Shown is the magnetic field b vs & for various 7. Here v = 0.05.
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outer conductor is the cathode, the steady-state distribution
of the magnetic field is modified and the magnetic field is
expected to be expelled from the plasma.

Realization of such a scenario in an actual experiment is
difficult. The rate of heating is not easy to predict, nor is the
dependence of the plasma collisionality on its temperature.
In addition, any such experiment must be short since the
magnetic pressure begins to push the plasma.

For a collision-dominated magnetic field penetration
the resistivity determines only the rate of penetration and the
steady state does not depend on the resistivity. However, as
mentioned above, for the Hall resistivity-dominated mag-
netic field penetration the rate of penetration and final
steady state both depend on the resistivity. Figures 3 and 4
show the 2-D steady-state distributions of the magnetic field
in the cases in which the cathode is in the inner and outer
conductors, respectively:

b(&p) = — [1 + 2 exp( — a/erp?) Jtanh(aé /erp*)
(19a)

and

2 2
b(£p) = TELE tan[i (1222 )] am)
a 2 a

where p=r/r, and e=1cne/|By| is a characteristic ratio of
the collisional resistivity # to the Hall “resistivity”
|By|/(cne). In Figs. 3 and 4 rp/r,= 1.5, r,//a=0.5, and
€ = 0.1. The current flows along the contour levels of b,
which therefore also shows the current distribution.

A simple analytical form for the magnetic field penetra-
tion is obtained for the case that

2y sinh( — y/v)
[cosh( — ¥/v) 4+ exp( — ‘)’27/1’)]’
b0,7) =0

b(_I,T)= -

and
b(£,0) = — 2y sinh(y§ /v)/{cosh(y& /v) + 17 .

Here ¥ = ikyv and k, is one of the two imaginary roots of the
dispersion relation [Eq. (11) with the minus sign]. The so-
lution is?!

Magnetic Field Contour Levels
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FIG. 3. The steady-state contour levels of the magnetic field in the (£,p)
plane. The cathode is in the inner conductor [Eq. (19a)}]: r//a=0.5,
e=0.1.
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Magnetic Field Contour Levels
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FIG. 4. The steady-state contour levels of the magnetic field in the (£,p)
plane. The cathode is in the outer conductor [Eq. (19b)}): r,/a = 0.5,
€ = 0,05,

— 2y sinh (Y€ /v)
[cosh(yE /v) + exp( — V*7/v)]
and becomes asymptotically the steady shock that is given by
Eq. (15).

b(g,r) = (20)

V. DISCUSSION

We have studied here the magnetic field evolution in a
short-duration hollow cylindrical plasma. For times so short
that the ion motion is small and if the dissipative resistivity,
electron inertia, and pressure are small, the magnetic field
evolution is governed by the Hall resistivity, We have shown
that the magnetic field penetrates into the plasma in the form
of a shock wave or is expelled from the plasma, depending on
the direction of the accompanying radial current.

We have analyzed a simplified 1-D model. However, 2-
D effects are very important. In a usual collisional diffusion
the magnetic field energy flows in the direction of penetra-
tion. When the magnetic field penetration is driven by the
Hall field, the magnetic field energy is carried by the elec-
trons along current lines. In our problem this energy flows
mainly in the radial direction, perpendicular to the axial di-
rection of penetration. The magnetic field penetrates into or
is expelled from the plasma in the axial direction not because
energy flows axially into or out of the plasma, but because of
the difference between the energy that flows radially into
and out of the plasma. In the case of penetration the energy
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that flows radially into the plasma is greater than the energy
that flows out of the plasma and vice versa in the case of
expulsion. In the latter case, the magnetic field energy that
flows radially out of the plasma is dissipated in a boundary

layar naar tha annda Tn o fatira etnndy woe will atndy tha £:11
1aYEer BeAr vl andal. i & 1uiule StuQy W Wil Sty i i

2-D problem with the radial boundary conditions.
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