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The axial penetration of an azimuthal magnetic field into a short-duration hollow cylindrical 
plasma is studied. When the process is so fast that the ion motion is small and the plasma 
dissipative resistivity, electron inertia, and pressure are small, the evolution of the magnetic 
held is governed by the Hall field. When the radial current flows inward, the magnetic field 
penetrates in the form of a Hall-induced shock wave with a narrow current channel. When 
outward, the magnetic field does not penetrate the plasma. Moreover, in the latter case the 
magnetic field is expelled from an initially magnetized plasma. The increase and decrease of 
the magnetic field intensity in the cylindrical plasma are shown to result naturally from the 
frozen-in law. 

I. INTRODUCTION 

The effect of the dissipationless Hall field on the behav- 
ior of plasmas is often considered (see, for example, Refs. l- 
9). We focus on the role of the Hall field in magnetic field 
penetration into short-duration plasmas. When a process is 
so fast that the ion motion is small and the plasma dissipative 
resistivity, electron inertia, and pressure are small, the evolu- 
tion of the magnetic geld is in fact governed by the Hall field. 
In a parallel paper’c we examine the magnetic field penetra- 
tion into an already magnetized short-duration plasma. In 
Ref.10 the Hall electric field enables the magnetic field to 
penetrate as a whistler wave along a background magnetic 
field. In the present paper we study the axial penetration of 
an azimuthal magnetic field into an initially unmagnetized 
short-duration hollow cylindrical plasma. Contrary to the 
mechanism of penetration described in Ref. 10, the mecha- 
nism described here does not rely upon the presence of a 
magnetic field component in the direction of penetration. 
We show that for an inward radial current the Hall field 
significantly enhances the magnetic field penetration. The 
magnetic field then penetrates in the form of a Hall-induced 
shock wave. However, in the case of an outward radial cur- 
rent, the magnetic field does not penetrate the plasma. More- 
over, if in this case the plasma is initially magnetized, the 
magnetic field decreases the volume it occupies and is ex- 
pelled from the plasma. 

In Sec. II we explain the physical origin of the mecha- 
nism of magnetic field evolution and show that this evolu- 
tion results naturally from the frozen-in law. We then derive 
the governing equation. In Sec. III we describe the magnetic 
field penetration in the form of a Hall-induced shock wave. 
The expulsion of the magnetic field from an initially magne- 
tized plasma is described in Sec. IV. We conclude in Sec. V 
with a discussion of the limitations of our model, 

II. THE MODEL 
We consider plasmas of relatively low pressure and un- 

der strong magnetic fields for time scales longer than the 
electron cyclotron period. Ohm’s law, which results from 
the electron momentum equation, becomes 

E = 77j - (v,xB)/c. (11 
Here E and B are the electric and magnetic fields, j is the 
current, Y, is the electron flow velocity, c is the velocity of 
light in vacuum, and q is the collisional resistivity. In the 
limit of zero resistivity, the electrons move with their EXB 
velocity only. If we combine Ohm’s law in this limit with 
Faraday’s law we obtain 

$=Vx(v,xB). (2) 

Equation (2) expresses the familiar frozen-in law: the mag- 
netic field is frozen into the electron fluid. 

We first discuss the mechanism that governs the evolu- 
tion of a magnetic field which satisfies the frozen-in law. 
Such an evolution was recently addressed by Kulsrud et 
al.,’ * who anaiyze an axially symmetric electron flow in cy- 
lindrical geometry, where the magnetic field has an azi- 
muthal component only. Kulsrud et al. show that in such a 
flow nr/B is constant along an electron trajectory (n is the 
electron density); they then make the assumption [ assump- 
tion (4) in Ref. 111 that the plasma is in a quasisteady state, 
so that the electron current lines are coincident with the 
electron trajectories. From this assumption follows the con- 
clusion that along the electron current lines nr/B should be 
constant. Since this is usually not so, Kulsrud et at. conclude 
that a pure ExB motion of the electrons is not possible. This 
conclusion is in fact correct only with regard to steady-state 
current distributions. Pure ExB motion is possible and re- 
sults in time-dependent current distribution where the cur- 
rent lines are not coincident with the electron trajectories. 
When nr/B is not constant along the current lines, the mag- 
netic field and current lines evolve in time, so that w/B re- 
mains constant along the electron trajectories. If the density 
is uniform and the electrons move radially from a small radi- 
us to a large radius the magnetic field grows in time, so that 
w/B is constant along the electron trajectories. The magnet- 
ic field then penetrates into the plasma. If, however, the elec- 
trons move radially from a large radius to a small radius the 
magnetic field does not grow, but rather decreases in time. 
Thus the nonuniformity of nr/Bis the source ofthe magnetic 
field evolution and results in either an increase or decrease of 
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the magnetic field intensity in the cylindrical plasma. We 
emphasize that the magnetic field intensity may increase 
from a nonzero value to a larger value while satisfying the 
frozen-in law. However, in order for the magnetic field in- 
tensity to increase from a value of zero there must be some 
resistivity. 

In rectangular geometry n/B has to be constant along 
electron trajectories. By an argument similar to that above, if 
electrons move from a low density region to a high density 
region, the magnetic field in the plasma grows in time, while 
if the electron motion is reversed, the magnetic field reduces 
in time. 

We assumed above that the time scale is longer than the 
electron cyclotron period and therefore neglected the elec- 
tron inertia. We now restrict ourselves to magnetic field evo- 
lution in short-duration plasmas, where the characteristic 
time is smaller than the ion cyclotron period and we assume, 
therefore, that the ions are immobile. These two assump- 
tions correspond to the assumption that the ion mass is infi- 
nite, while the electron mass is zero. Equation (1) is then 
approximated as 

E = vj + (jXB)/enc. (3) 
Here j is the current and e is the electron charge. At the limit 
of immobile ions the Hall field, which is the second term on 
the right-hand side of Eq. (3 ), results from the electron mo- 
tion only. As often done for plasmas of high enough density, 
we neglect the displacement current in Ampere’s law: 

VXB = (4r/c)j. (4) 
Since the current is divergence-free the charge density is con- 
stant in time and since the ions are immobile the electron 
density is constant in time. Equations (3) and (4), com- 
bined with Faraday’s law, become 

~=?p- C2 zV~[(-&VX+B]. (5) 
Equation (4) governs the evolution of the magnetic field in 
short-duration plasmas in the presence of electron motion 
only. The first term on the right-hand side of Eq. (4) is the 
source of collisional diffusion; the second term results from 
the Hall field. In the present paper we examine the effect of 
the Hall field in cylindrical geometry. The case in which the 
Hall field enables the magnetic field to penetrate as a whis- 
tler wave is studied in Ref. 10. The magnetic field evolution, 
when governed by the electron dynamics, has been studied 
extensively in the Soviet literature.’ 

Assume a hollow cylindrical plasma that fills the gap 
between two concentric cylindrical conductors and closes 
the circuit for a current which flows in one conductor and 
returns in the other conductor. The system has cylindrical 
symmetry (d/J6 = 0) and the magnetic field has only a 8 
component. The governing equation (5) becomes 

a43 c2Tj a2& 
at =4n a2 [ 

- +~(g!$.!L)] 

B, 84 
+%kaz* (6) 

For simplicity the constant-in-time density is assumed uni- 
form in space. Equation (6) is now written as 

h= - rB,. (7) 

Since we are interested in the case in which the collisionality 
is small, we have neglected the collisional terms in the radial 
direction. We have retained only the collisional term in the 
axial direction, which is the term that smooths the singular- 
ity at the possible shock front. The collisional terms that 
include radial derivatives are important near the radial 
boundaries. In a future analysis we will present a full 2-D 
solution of Eq. (6). 

Assume now that a finite hollow cylindrical plasma is 
located at - a<~,<0 and r, <r~r,. At t>O a constant-in-time 
current flows in the conductors and generates at z = - a a 
constant-in-time magnetic field 6 = r, B,, while at z = 0 the 
magnetic field is ?, = 0. Equation (7) becomes 

a2b g+b+- a12’ (8) 

wherer=t/~~,g=z/u,andbr&/(r,lB~l).Thetransittime 
rr and the normalized resistivity Y are 

Tr r2me?a/clB,Ir,, v=r]cne?/21B,,lur,. (9) 
Note that since in Eq. (8) there is no derivative with respect 
to r, we treat r as a parameter. The normalized resistivity Y 
measures the ratio of the collisional resistivity V to the effec- 
tive Hall “resistivity” (2IB,lur,)/(cne?). The characteris- 
tic velocity of penetration is clB,lr,/(4me?). As long as 
this velocity is large compared to the AlfvCn velocity 
IB,lr,/(47~Mn)“~r (M is the ion mass), there is not much 
plasma pushing and the magnetic field penetration is the 
dominant process. In this case the plasma density remains 
constant. The criterion for the validity of our model is, there- 
fore, c/w,, $ r ( wPi is the ion plasma frequency). 

Equation (8) is the Burgers equation.” In a similar 
analysis of magnetic field penetration into plasmas7 the 
Burgers equation is derived in relation to penetration per- 
pendicular to a density gradient in a nonuniform plasma; the 
analogous penetration in cylindrical geometry is mentioned 
as well. Here we will explicitly solve the initial-value prob- 
lem in finite hollow cylindrical plasma and discuss the ex- 
pansion wave that describes magnetic field expulsion from 
the plasma. 

III. FAST MAGNETIC FIELD PENETRATION 
We solve Eq. (8) with the initial magnetic field 

b(r,&T = 0) = b,(r,c) and the boundary conditions 
b(r, - 1,~) = +_ 1, b( r,O,T) = 0. The first set of conditions 
(the plus sign) corresponds to the case in which the cathode 
is in the inner conductor, while the second set (the minus 
sign) corresponds to the cathode in the outer conductor. We 
show that these two cases exhibit completely different beha- 
viors of the magnetic field. 

We solve Eq. (8) by transforming it into the linear heat 
equation d$/dr = y( d “$/L&$ 2, for $(&Q-) through” 

b= -2y23. 
* 

The corresponding boundary conditions are 

(10) 
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+$ $( - 1,7) = 3 ( - I,?-), 
al 

3 (O,T) = 0, 
a5 

(11) 
and the initial condition is 

$4&O) = exp 
c k,G”) dc’- . 

2Y 
The magnetic field is therefore 

b(&,r) = 2~ 
8,“= ,a,k, sin(k,&exp( - ~k2,r) 

ZZ= ,a,, cos(k,c)exp( - vk2,7) ’ 
(13) 

where k, are the roots of the dispersion relation 
+ 1/2v = k, tan k,. (14) 

Let us first examine the case in which the cathode is in 
the inner conductor [the sign in Eq. ( 14) is minus]. The 
dispersion relation has an infinite number of real eigenvalues 
k,, one in each interval [ Z-( n - +) ,rrn ] . There is also a pair 
of complex conjugate purely imaginary eigenvalues. The so- 
lution of the heat equation is therefore unbounded, but the 
corresponding solution of the Burgers equation is perfectly 
physical. We assume that the plasma is initially unmagne- 
tized b,( r,c) = 0, $({,O) = 1 for - 1 <f<O. The coeffi- 
cients then are a,, = 4 sin k,/( 2k, + sin 2k, ). The asymp- 
totic solution of the Burgers equation is determined by the 
growing mode of the heat equation and has the form of a 
steady shock 

b(r,{,T= co) = - 2~lk,,(tanh(Ik,(~). (15) 
At the limit of low collisionality (Y< 1) the magnetic field 
almost fills the plasma except for a narrow layer of a thick- 
ness proportional to the resistivity. The current is concen- 
trated in this layer and the magnetic field drops to zero 
across it. 

The real eigenvalues k, (n = 1,2,...) are located in the 
intervals [ (n - 4) r,nrr] . The smaller k,‘s, for which 
2vk, < 1, are located near (n - ;)r and are approximately 
k, = (n - t)rr( 1 + 2~). The larger k,‘s, for which 
2vk, $1, are located near nv and are approximately 
k, = n~( 1 - 1/2~n’7?). The imaginary eigenvalues are 
k, = -& ( V~Y) ( 1 + 2e - I”‘). The asymptotic solution 
becomes 

b(&;7.= oo) = - (1 +2e-‘9 

X{[l -exp(li/~)lG.l +exp(E/v)lI 
+ 8 [(e-I’“)“]. (16) 

The magnetic field deviates from - 1 only in the narrow 
boundary layer, where (5 [ = B(Y) . 

In the second case the cathode is in the outer conductor 
and b( r, - 1,~) = - 1. The dispersion relation [ Eq. ( 11) 
with the plus sign] has real eigenvalues only. In each interval 
[ (n - l)n;(n - $)7-r] there is one eigenvalue 
k, (n = 1,2,...). The asymptotic solution is determined by 
the slowest decaying mode of the heat equation 

b(g,r = 43 ) = 2vk, tan k,{. (17) 
When the collisionality is low the magnetic field does not 
penetrate the plasma except for a narrow boundary layer. 
The smaller k,‘s, for which 2vk, 4 1, are approximately 

k, = (n - $)rr( 1 - 2~). The larger k,,‘s, for which 
Zvk, B 1, are approximately k, = (n- l)rr[l 
+ 1/2v(n - 1 )‘+I. The asymptotic solution is therefore 

b(g,T= a,) =VD- tan [(n/2)(1 -2~)gl -l-C?(?). 
(18) 

Thus the magnetic field is small except when 6 + 1 = O(Y). 
Figure 1 shows the penetration of the magnetic field into 

the plasma as a function of time for both cases. When the 
inner conductor is the cathode the magnetic field penetrates 
the plasma in the form of a shock. The characteristic pene- 
tration time is the transit time rl. The geometry considered 
here is similar to that of the plasma opening switch 
(Pos).‘3J4 The rate of penetration of the magnetic field into 
the plasma in the POS is a central issue.3*8*‘5-‘8 For the typi- 
cal parameters of a POS (n = lOI cm - 3, lBOl = 10 kG, 
r, = 5 cm, r2 = 8 cm, a = 10 cm), the transit time is 30 nsec, 
which is much shorter than the resistive diffusion time. The 
mechanism described here could possibly be considered in 
conjunction with the fast magnetic field penetration mea- 
sured in the POS.” However, further experimental and 
theoretical studies are necessary before any such relation 
between the mechanism described here and the POS is sug- 
gested. Measurements of the spatial distribution of the mag- 
netic field in the plasma of the POS and the dependence of 
this distribution on the switch polarity are necessary. Pre- 
vious measurements employing current loops” have been 
made only for the case in which the cathode is in the inner 
conductor and for this case seem to con&m the prediction of 
this model for fast penetration. However, we are not aware of 
any measurements that could support the prediction of 
strong dependence of the field penetration on the switch po- 
larity. A theoretical study should include the physics of the 
sheaths near the electrodes” and in particular, the ion push- 
ing from the sheaths by the magnetic pressure.” These 
sheaths are believed to play a dominant role in POS perfor- 
mance. We also note that there is no evidence of the effect 
described here in simulations of the POS.18 The Soviet re- 
searcher@ also suggested and discussed in detail the possibil- 
ity that this shock wave, which they relate mainly to density 
nonuniformity, is associated with magnetic-field penetration 

Penetration of the Magnetic Field 
b 
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FIG. 1. Penetration of the magnetic field b into an initially unmagnetized 
plasma for a negative polarity (positive values) and for a positive polarity 
(negative values) for various times 7. Here Y = 0.05. 
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in the POS. However, because of the simplicity of our model 
and the large number of assumptions involved, our purpose 
is not to describe or model any particular device, but 
rather to describe a basic physical effect in an idealized 
configuration. 

IV. EXPULSION OF THE MAGNETIC FIELD 

A somewhat unusual case arises when the plasma is ini- 
tially magnetized when the outer conductor is the cathode. 
The initial condition is hJ(r& = - 1, 
$( {,O) = exp(l/2~). The magnetic field behaves as an ex- 
pansion wave and is expelled from the plasma on the transit- 
time time scale. The detailed forms of the boundary layer 
[ Eq. ( 15) ] and surface current are established on the slower 
resistive time scale. The coefficients are 
a, = SV/[ 1 + (2~k,)*] (2 + sin 2k,). Figure 2 shows the 
expulsion of the magnetic field from the plasma. An initially 
magnetized plasma expels the magnetic field. Although of a 
completely different nature, the effect of the magnetic field 
relaxing to a steady state in which it is expelled from a large 
volume of the plasma without a change in the boundary con- 
ditions is somewhat reminiscent of the Meissner effect in 
superconductors. 

Let us describe a scenario in which the magnetic field 
decreases the volume it occupies in the plasma and is even 
expelled from the plasma without a change in the magnetic 
field at the plasma axial boundaries. The nature of the expul- 
sion of the magnetic field we will now describe is different 
from that of the expulsion shown in Fig. 2. The plasma resis- 
tivity will change and as a result the steady-state distribution 
of the magnetic field will be changed. We are not sure 
whether this scenario could be realized in practice. How- 
ever, it exhibits how in principle the expulsion of the magnet- 
ic field could occur. 

We assume a plasma in which the collisional resistivity 
is initially larger than the Hall resistivity. The magnetic field 
diffuses into the plasma and the current fills the plasma uni- 
formly on the resistive time scale. As the plasma is heated by 
the currents, its collisional resistivity (if it is classical) de- 
creases and the Hall resistivity becomes dominant. If the 

Expulsion of the Magnetic Field 
b 

0.0 
-0. I 
-0.2 
-0.3 
-0:4 
-0.5 
-0.6 
-0.7 
-0.8 
-0.9 
- 1.0 

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 

outer conductor is the cathode, the steady-state distribution 
of the magnetic field is modified and the magnetic field is 
expected to be expelled from the plasma. 

Realization of such a scenario in an actual experiment is 
difficult. The rate of heating is not easy to predict, nor is the 
dependence of the plasma collisionality on its temperature. 
In addition, any such experiment must be short since the 
magnetic pressure begins to push the plasma. 

For a collision-dominated magnetic field penetration 
the resistivity determines only the rate of penetration and the 
steady state does not depend on the resistivity. However, as 
mentioned above, for the Hall resistivity-dominated mag- 
netic field penetration the rate of penetration and final 
steady state both depend on the resistivity. Figures 3 and 4 
show the 2-D steady-state distributions of the magnetic field 
in the cases in which the cathode is in the inner and outer 
conductors, respectively: 

b(f,p) = - [ 1 + 2 exp( - a/Erg*)]tanh(a~/Erg*) 
(19a) 

and 

b(&p) = * tan[:(l -*)E], (19b) 

where p = r/r, and E= vcne/] B, ] is a characteristic ratio of 
the collisional resistivity 7 to the Hall “resistivity” 
]B,(/(cne). In Figs. 3 and 4 r2/r, = 1.5, r,/a = 0.5, and 
E = 0.1. The current flows along the contour levels of 6, 
which therefore also shows the current distribution. 

A simple analytical form for the magnetic field penetra- 
tion is obtained for the case that 

b( - 1,~) = - 2y sinh( - Y/Y) 
[cosh( - y/v) + exp( - Jr/v) ] ’ 

b(O,r) = 0 

b(l,O) = - 2ysinh(yf/y)/[cosh(y~/y) + l] . 

Here y = ik,,~ and k, is one of the two imaginary roots of the 
dispersion relation [ Eq. ( 11) with the minus sign]. The so- 
lution is*’ 

0 Magnetic Field Contour Levels 

-1.00 -0.75 -0.50 -0.25 0.00 E 

t c 

FIG. 2. Expulsion of a magnetic field from an initially magnetized plasma. 
Shown is the magnetic field b vs & for various T. Here Y = 0.05. 

FIG. 3. The steady-state contour levels of the magnetic field in the (6,~) 
plane. The cathode is in the inner conductor [Eq. (19a) 1: r,/a = 0.5, 
e=O.l. 
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FIG. 4. The steady-state contour levels of the magnetic field in the (6,~) 
plane. The cathode is in the outer conductor [Eq. ( 19b) 1: r,/a = 0.5, 
6 = 0.05. 

- 2 y sinh ( r{ /Y) 
b(“T) = [cosh(&/Y) + exp( - Jr/y)] 

(20) 

and becomes asymptotically the steady shock that is given by 
Eq. (15). 

V. DISCUSSION 
We have studied here the magnetic field evolution in a 

short-duration hollow cylindrical plasma. For times so short 
that the ion motion is small and if the dissipative resistivity, 
electron inertia, and pressure are small, the magnetic field 
evolution is governed by the Hall resistivity. We have shown 
that the magnetic field penetrates into the plasma in the form 
of a shock wave or is expelled from the plasma, depending on 
the direction of the accompanying radial current. 

We have analyzed a simplified 1-D model. However, 2- 
D effects are very important. In a usual collisional diffusion 
the magnetic field energy flows in the direction of penetra- 
tion. When the magnetic field penetration is driven by the 
Hall field, the magnetic field energy is carried by the elec- 
trons along current lines. In our problem this energy flows 
mainly in the radial direction, perpendicular to the axial di- 
rection of penetration. The magnetic field penetrates into or 
is expelled from the plasma in the axial direction not because 
energy flows axially into or out of the plasma, but because of 
the difference between the energy that flows radially into 
and out of the plasma. In the case of penetration the energy 

that flows radially into the plasma is greater than the energy 
that flows out of the plasma and vice versa in the case of 
expulsion. In the latter case, the magnetic field energy that 
flows radially out of the plasma is dissipated in a boundary 
layer near the anode. In a future study we will study the full 
2-D problem with the radial boundary conditions. 
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